Structure and Dynamics of Li₃InBr₆ and NaInBr₄ by Means of Nuclear Magnetic Resonance*

Yasumasa Tomita, Koji Yamada, Hiroshi Ohki, and Tsutomu Okuda Department of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Z. Naturforsch. 53a, 466–472 (1998); received January 26, 1998

Li₃InBr₆ and NaInBr₄ have been synthesized and characterized by means of DTA, ⁸¹Br NQR, ⁶Li, ⁷Li, ²³Na, and ¹¹⁵In NMR, and AC conductivity. These measurements revealed the presence of phase transitions and cationic diffusion in both compounds. From the spin-lattice relaxation times of ⁸¹ Br NQR and the peak widths of ⁷Li and ²³Na NMR spectra, it is deduced that the conduction is due to cationic diffusion. The activity energy for the Li⁺ diffusion was found to be 24 kJ/mol for Li₃InBr₆.

Key words: NOR; NMR; Spin-lattice Relaxation Time; AC Conductivity; Cation Diffusion.

Reprint requests to Prof. T. Okuda; Fax: 0824-24-0727.